

MEMORANDUM

то:	Mike Rolband
FROM:	Alison Robinson
CC:	Ben Rosner, Mark Headly, Frank Graziano
RE:	Northern Virginia Stream Restoration Bank The Glade- Design Reaches 5 and 6 Supplemental Biological Monitoring Year 4 (2014) WSSI #20030, Task M3a
DATE:	October 9, 2014

Per maintenance and monitoring requirements defined in the "Northern Virginia Stream Restoration Bank Banking Instrument", Section VI.B.2.(i), biological monitoring will be conducted prior to stream restoration, then in years 1, 5, and 10 in The Glade- Design Reaches 5 and 6¹. However, monitoring was undertaken voluntarily in Year 4 (2014)² at biomonitoring Reaches 1-A through 1-C to better understand and document the effects of stream restoration on the benthic community within The Glade Watershed³. Field work was conducted by WSSI environmental scientists Beth Clements, PWS, PWD, CT⁴, and Matthew Johnson⁵, WPIT, CAE, CT on April 9, 2014. Benthic macroinvertebrate habitat field data sheets and benthic macroinvertebrate bench sheets for each reach are enclosed within.

Habitat results for Year 4 (Post-Construction) show that all of the biomonitoring reaches sampled in The Glade have "Optimal" habitat conditions (<u>Table 1</u>, <u>Figure 1</u>). The average habitat assessment score for all restored biomonitoring reaches assessed in Year 4 (2014) is 179 (Optimal) out of 200 following restoration. These results show improved habitat conditions following restoration, with scores exceeding the pre-restoration average of 154 (Sub-Optimal) out of 200. Improved habitat assessment scores following restoration relate to the continued success of the vegetated and stabilized banks with little erosion and depositional zones present in the restored portions of the monitoring reaches, as well as the continued stability of the non-restored portions of the Glade.

The results of our data analysis indicate that the benthic macroinvertebrate community at all three biomonitoring reaches were in "Severe Stress" in Year 4, based on their Stream Condition

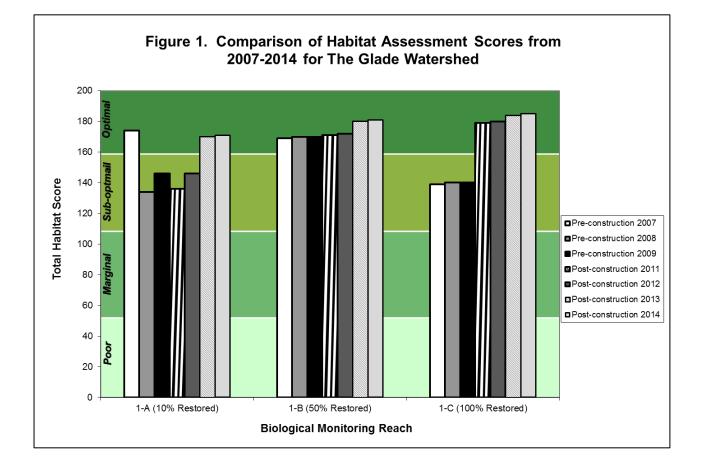
¹ Biomonitoring reach locations were selected prior to the design phase; therefore, biomonitoring reaches 1-A through 1-C are located within Design Reaches 5 and 6.

5300 Wellington Branch Drive • Suite 100 • Gainesville, VA 20155 • Phone 703.679.5600 • Fax 703.679.5601 www.wetlandstudies.com

² Voluntary biomonitoring was conducted in Year 2 (2012) and Year 3 (2013) as described in previous memos.

³ Note that Reach 1-A is 10% restored and Reach 1-B is 50% restored. Reach 1-C is the only fully restored reach in Design Reaches 5 and 6.

⁴ Professional Wetland Scientist #2350, Society of Wetland Scientists Certification Program, Inc., VA Certified Professional Wetland Delineator #3402-0000146, and North American Benthological Society (NABS) Certified Family Level Taxonomist: All Phyla


⁵ Wetland Professional In Training, Society of Wetlands Scientists Certification Program, Inc.; Ecological Society of America, Certified Associated Ecologist; Society of Freshwater Science Certified Family Level Taxonomist: All Taxa.

Index for Virginia Non-coastal Streams (VA-SCI)⁶ scores (<u>Table 2</u>, <u>Figure 2</u>). The average VA-SCI numerical score for all reaches assessed in 2014 is 26.49 ("Severe Stress") which is slightly less than the 2013 average of 27.16 but is above 2011 and 2012 VA-SCI scores (16.31 and 20.07, respectively).

In conclusion, the results of the 2014 supplemental monitoring indicate that there has been a continued improvement of habitat scores and a slight decline in the health of the benthic community composition in the 2014 sampled reaches as compared to the Year 3 (2013) supplemental monitoring. Such year to year variability is expected.

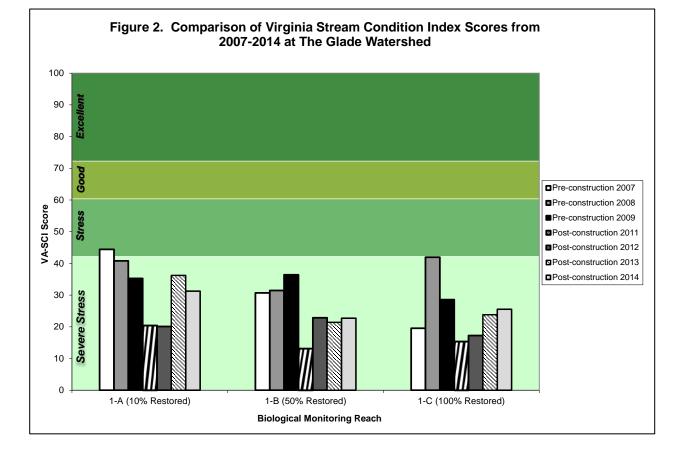

Enclosures

Table 1. 2014 Total Habitat Assessment Scores						
BIOMONITORING REACH	Total Habitat	Narrative Rating				
1-A (10% Restored)	171	Optimal				
1-B (50% Restored)	181	Optimal				
1-C (100% Restored)	185	Optimal				
Average	179	Optimal				

⁶ The VA-SCI is a multi-metric Index of Biotic Integrity developed for the DEQ to assess streams of the Commonwealth.

Table 2. 2014 Biotic Metric and Index Weighting and VA-SCI at The Glade.							
	BIOLOGICAL MONITORING REACH						
WEIGHTED METRIC	1-A (10% Pastarad)	1-B	1-C (100% Restored)				
Total Taxa	(10% Restored) 59.09	(50% Restored) 31.82	45.45				
EPT Taxa	27.27	0.00	9.09				
Percent Ephemeroptera	8.41	0.00	0.00				
Percent Plecoptera + Trichoptera (Excluding Hydropsychidae)	0.00	0.00	0.00				
Percent Scrapers	13.99	2.23	7.45				
Percent Chironomidae	35.05	43.68	41.35				
Percent Top Two Dominant	32.78	24.92	23.62				
HBI	73.38	78.94	77.35				
VA-SCI Numerical Score	31.25	22.70	25.54				
VA-SCI Narrative Score	Severe Stress	Severe Stress	Severe Stress				
Average VA-SCI Numerical Score	26.49						
Average VA-SCI Narrative Score	Severe Stress						

L:\20000s\20030\Admin\05-ENVR\Biomonitoring\Reaches 5 and 6\PostCon Yr 4 - 2014\2014-Reach 5-6_Glade_Benthic_Memo.docx

Wetland

Benthic Macroinvertebrate and Habitat Field Data Sheet - High Gradient Job # Task 20030, Task M3a Station ID: Land Use: Reach 1-A Ecoregion: Piedmont Urban Field Team: BAC / MJ Location: Reston, VA Start time: The Glade 38°55'49" Site: Latitude: Finish time: 4/9/2014 Longitude: 77°19'29" Survey Reason: Year 4 Biomonitoring Date: Stream Physiochemical Measurements Instrument ID number: N/A pH: N/A Temperature: N/A °C Conductivity: N/A uS/cm N/A Dissolved Oxygen: mg/L Did instrument pass all post-calibration checks? N/A If NO- which parameter(s) failed and action taken: N/A **Benthic Macroinvertebrate Collection** Method Used: Single Habitat (Riffle) Multi Habitat (Logs, Plants, etc.) х Riffle Quality: Good Marginal None Х Poor Woody Riffle Habitats Sampled: х Debris Banks Vegetation х 6 10 # Jabs: Weather Observations **Current Weather** Cloudy Clear х Rain/Snow Foggy **Recent Precipitation** Clear Х Showers Rain Storms Stream Flow Normal х Flood Low Above Normal **Biological Observations** 2 Periphyton Salamanders 0 Other Filamentous Algae Warmwater Fish 0= Not observed Submerged Macrophytes Coldwater Fish 0 1= Sparse **Emergent Macrophytes** Beavers 0 2= Common to Abundant 0 Muskrats Cravfish 0 3= Dominant-Ducks/Geese Corbicula 0 0 Abnormally high density where other taxa are Unionidae 0 Snakes 0 insignificant in relation to the dominant taxa. Turtles There can be situations where multiple taxa **Operculate Snails** 0 1 are dominant such as algae and snails Frogs/Tadpoles Non-operculate Snails 0 1 **High Gradient Habitat Data Sheet Condition Category** Habitat Parameter Optimal Suboptimal Marginal Poor Score Greater than 70% of substrate 40-70% mix of stable favorable for epifaunal habitat; well suited for full colonization potential; colonization and fish cover; mix 20-40% mix of stable Less than 20% stable 1. Epifaunal of snags, submerged logs, adequate habitat for habitat; habitat availability habitat: lack of habitat is Substrate/ Available undercut banks, cobble, or other maintenance of less than desirable; obvious; substrate stable habitat and at stage to populations: presence of substrate frequently Cover unstable or lacking. allow full colonization potential additional substrate in the disturbed or removed. (i.e. snags/logs that are not new form of newfall, but not vet fall and not transient) prepared for colonization. Score 20 19 18 17 16 10 9 8 7 6 18 15 14 13 12 11 5 4 3 2 1 0 Fravel, cobble, and bould Gravel, cobble, and Gravel, cobble, and Gravel, cobble, and particles are 0-25% surrounded boulder particles are 25boulder particles are 50boulder particles are more 2. Embeddedness by fine sediment. Layering of than 75% surrounded by 50% surrounded by fine 75% surrounded by fine cobble provides diversity of niche sediment. sediment. fine sediment. space 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Score 20 19 18 17 16 17 All four velocity/depth regimes Only 2 of the 4 habitat Only 3 of the 4 regimes Dominated by 1 present (slow-deep, slow-Velocity/Depth present (if fast-shallow is regimes present (if fastshallow, fast-deep, fast velocity/depth regime nissing, score lower than shallow or slow-shallow Regime shallow)(slow is <0.3m/s, deep is (usually slow-deep). if missing other regimes). are missing, score low) >0.5 m). Score 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 Moderate deposition of Heavy deposits of fine Some new increase in bar new gravel, sand, or fine material, increased bar Little or no enlargement of formation, mostly from sediment on old and new development: more than 4. Sediment islands or point bars and <5% of gravel, sand, or fine bars: 30-50% of the 50% of the bottom the bottom affected by sediment sediment; 5-30% of the bottom affected; sediment changing frequently; pools Deposition deposition. bottom affected; slight deposits at obstructions, almost absent due to deposition in pools. substantial sediment constrictions and bends: moderate deposition of deposition. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 1 0 Score 4 3 2 14 5

Benthic Macroinvertebrate and Habitat Field Data Sheet - High Gradient **Condition Category** Habitat Parameter Optimal Suboptimal Marginal Poor Score Water fills >75% of the Water fills 25-75% of the Very little water in channel Water reaches base of both 5. Channel Flow available channel; or <25% available channel, and/or lower banks, and minimal amoun and mostly present as of channel substrate is riffle substrates are mostly Status standing pools. of channel substrate is exposed exposed. exposed. 20 19 18 17 16 15 14 13 12 11 18 Score 10 9 8 7 6 5 4 3 2 1 0 Some channelization Channeliztion may be Banks shored with gabion present, usually in areas of extensive; embankments or cement; over 80% of bridge abutments; Channelization or dredging or shoring structures the stream reach evidence of past 6. Channel Alteration absent or minimal; stream width present on both banks; channelized and disrupted channelization, i.e. normal pattern. and 40-80% of stream Instream habitat greatly dredging, may be present reach channelized and altered or removed but recent channelization is disrupted. entirely not present. 10 9 8 7 6 Score 20 19 18 17 16 15 14 13 12 11 5 4 3 2 1 0 18 Occurrence of riffles relatively frequent; ratio of distance Occasional riffle or bend; Generally all flat water or between riffles divided by width of Occurrence of riffles shallow riffles: poor bottom contours provide the stream <7:1 (generally 5 to infrequent; distance 7. Frequency of some habitat: distances habitat: distance between 7); variety of habitat is key. In between riffles divided by between riffles divided by riffles divided by the width Riffles streams where riffles are the width of the stream is the width of the stream is of the stream is a ratio of continuous, placement of between 7 to 15. between 15 to 25. >25. boulders or other large, natural obstruction is important. Score 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 14 Unstable: many eroded 8. Bank Stability Moderately stable; Moderately unstable: 30areas: "raw" areas Banks stable; evidence of infrequent, small areas of (score each bank) 60% of bank reach has frequent along straight erosion or bank failure absent or erosion mostly healed **Note: Determine left** areas of erosion; high sections and bends; minimal; little potential for future over. 5-30% of bank in erosion potential during obvious bank sloughing; or right side by problems. <5% of bank affected reach has areas of 60-100% of bank has floods erosion facing downstream. erosional scars. 10 Score Left Bank 10 9 8 6 4 3 0 7 5 2 Score Right Bank 10 9 4 0 10 8 7 6 5 3 2 1 70-90% of the streambank More than 90% of the 50-70% of the streambank Less than 50% of the surfaces covered by native streambank surfaces and vegetation, but one class surfaces covered by streambank surfaces immediate riparian zone covered of plants is not wellvegetation: disruption covered by vegetation: 9. Vegetation by native vegetation, including represented: disruption obvious: patches of bare disruption of streambank rees, understory shrubs, or non-**Protection (score** evident but not affecting soil or closely cropped vegetation is very high; woody macrophytes; vegetation vegetation common; less full plant growth potential vegetation has been each bank) disruption through grazing or to any great extent; more than one-half of the removed to 5 centimeters mowing minimal or not evident: than one-half of the potential plant stubble or less in average stubble almost all plants allowed to grow potential plant stubble height remaining. height. naturally. height remaining. Score Left Bank 9 10 9 6 3 0 8 5 4 2 9 Score Right Bank 10 9 0 8 7 6 5 4 3 10. Riparian Width of riparian zone >18 Width of riparian zone 12-Width of riparian zone 6-12 Width of riparian zone <6 meters; human activities (i.e. Vegetative Zone meters; human activities 18 meters; human meters; little or no riparian parking lots, roadbeds, clearactivities have impacted have impacted zone a vegetation due to human Width (score each cuts. lawns, or crops) have not zone only minimally. activities. great deal. banks riparian zone) impacted zone. Score Left Bank 10 10 9 6 5 0 8 3 Score Right Bank 10 9 171 Total Score Notes:

Job Name/#	(Glade - 2003	30	Sample subsorted by:	F	RD.		
		Reach 1-A					(Wetland))
Station ID:				Date Subsorted:	5/5	5/14	Studies and Solutions, In	.c.
Stream Name:		The Glade		# of Grids subsorted		7	_	
Date Sampled:	:	4/9/14		Total # of subsorted insects	:	101	Total # identified:	97
Sampling Meth	nod:	Multihabitat	t	Sample Identified by:	A	BR	Date Identified:	8/29/14
			•					0/20/1
Taxa Collecte	<u>ed:</u>					-		
		•	-	Metretopodidae			Lepidostomatidae	
Porifera	Spongillidae			Neoephemeridae			Leptoceridae	
Dstracoda	Unknown		-	Oligoneuridae			Limnephilidae	
latworms	Tricladida			Psuedironidae			Molannidae	
	Planariidae		_	Polymitarcyidae			Odontoceridae	
Bastropoda	Unknown Ancylidae			Potamanthidae Siphlonuridae			Philopotamidae Phryganeidae	
impets Snails	Immature			Tricorythidae			Polycentropodidae	
naiis	Lymnaeidae		Zygoptera	Early Instar and/or damaged			Psychomyiidae	
	Physidae		zygoptera	Calopterygidae	1		Ryacophilidae	
	Planorbidae	1	1	Coenagrionidae	2	1	Sericostomatidae	
	Hydrobiidae		1	Lestidae	L	1	Uenoidae	
	Pleuroceridae			Protoneuridae		Lepidoptera	Early Instar and/or damaged	
	Viviparidae	1	Anisopteera	Early Instar and/or damaged			Pyralidae	
ivalvia	Immature			Aeshnidae		Coleoptera	Early Instar and/or damaged	
	Corbiculidae			Cordulegastridae			Chrysomelidae	
	Sphaeriidae	2		Corduliidae		1	Curculionidae	
	Unionidae			Gomphidae		1	Dryopidae	
Dligochaeta	Unknown	12		Libellulidae		1	Dytiscidae	
umbriculida				Macromiidae			Elmidae	3
	Lumbriculidae			Petaluridae		1	Gyrinidae	
ubificida				Cordullidae/Libelluidae		1	Haliplidae	1
	Enchytraeidae		Plecoptera	Early Instar and/or damaged		1	Helodidae	
	Naididae			Capniidae			Helophoridae	
	Tubificidae			Chloroperlidae			Hydraenidae	
Haplotaxida				Leuctridae			Hydrochidae	
	Haplotaxidae			Nemouridae			Hydrophilidae	
eeches	Hirudinea			Peltoperlidae			Limnichidae	
	Erpobdellidae			Perlidae			Noteridae	
	Glossiphoniidae			Perlodidae			Psephenidae	
	Hirudinidae		_	Pteronarcyidae			Ptilodactylidae	
	Pisciolidae			Taeniopeterygidae			Scirtidae	
Branchiobdellida	Branchiobdellidae		Hemiptera	Early Instar and/or damaged		Diptera	Early Instar and/or damaged	
Copepoda	Unknown			Belostomatidae			Athericidae	
Decapoda	Cambaridae			Corixidae			Blephariceridae	
N	Portunidae		_	Gelastocoridae			Canaceidae	4
Shrimp	Dele ana side a		-	Gerridae			Ceratopogonidae	1
sopoda	Palaemonidae	1		Hebridae Hydrometridae		1	Choaboridae Chironomidae	63
oopoua	Asellidae		-	Mesoveliidae		1	Culicidae	03
mphipoda		<u> </u>		Naucoridae		1	Dixidae	
mpmpuud	Crangonyctidae	1		Nepidae		1	Dolichopodidae	
	Gammaridae			Notonectidae		1	Empididae	
	Talitridae			Veliidae		1	Ephydridae	
Vater Mites				Pleidae		1	Muscidae	
	Hydracarina	<u> </u>	Neuroptera			1	Nymphomyiidae	
phemeroptera	Early Instar and/or damaged			Sisyridae		1	Pelecorhynchidae	
	Acanthometropodidae	1	Megaloptera			1	Psychodidae	
	Ameletidae	1		Corydalidae		1	Ptychopteridae	
	Baetidae	1		Sialidae		1	Sciomyzidae	
	Baetiscidae		Trichoptera	Early Instar and/or damaged		1	Simuliidae	
	Behningiidae	1		Branchycentridae		1	Stratiomyidae	
	Caenidae	1		Calamoceratidae		1	Syrphidae	
	Ephemerellidae	<u> </u>		Glossosomatidae		1	Tabanidae	
	Ephemeridae	<u> </u>		Goeridae		1	Tanyderidae	
	Heptageniidae	4		Heliicopsychidae		1	Thaumaleidae	
	Isonychiidae	· ·		Hydropsychidae	3	1	Tipulidae	3
	Leptophlebiidae	1		Hydroptilidae	-	1		71
TOTAL:		20	TOTAL		6	TOTAL		

Wetland

Benthic Macroinvertebrate and Habitat Field Data Sheet - High Gradient Job # Task 20030, Task M3a Station ID: Land Use: Reach 1-B Ecoregion: Piedmont Urban Field Team: BAC / MJ Location: Reston, VA Start time: The Glade 38°55'25" Site: Latitude: Finish time: 4/9/2014 Longitude: 77°19'54" Survey Reason: Year 4 Biomonitoring Date: Stream Physiochemical Measurements Instrument ID number: N/A pH: N/A Temperature: N/A °C Conductivity: N/A uS/cm N/A Dissolved Oxygen: mg/L Did instrument pass all post-calibration checks? N/A If NO- which parameter(s) failed and action taken: N/A **Benthic Macroinvertebrate Collection** Method Used: Single Habitat (Riffle) Multi Habitat (Logs, Plants, etc.) x Riffle Quality: Good Marginal None Х Poor Woody Riffle Habitats Sampled: Debris Banks Vegetation х х 15 # Jabs: Weather Observations **Current Weather** Cloudy Clear х Rain/Snow Foggy **Recent Precipitation** Clear Х Showers Rain Storms Stream Flow Normal х Flood Low Above Normal **Biological Observations** 2 Periphyton Salamanders 0 Other Filamentous Algae Warmwater Fish 0= Not observed Ω Submerged Macrophytes Coldwater Fish 0 1= Sparse **Emergent Macrophytes** Beavers 0 2= Common to Abundant 0 Muskrats Cravfish 0 0 3= Dominant-Ducks/Geese Corbicula 0 0 Abnormally high density where other taxa are Unionidae 0 Snakes 1 insignificant in relation to the dominant taxa. Turtles There can be situations where multiple taxa **Operculate Snails** 0 1 are dominant such as algae and snails Non-operculate Snails 0 Frogs/Tadpoles 2 **High Gradient Habitat Data Sheet Condition Category** Habitat Parameter Optimal Suboptimal Marginal Poor Score Greater than 70% of substrate 40-70% mix of stable favorable for epifaunal habitat; well suited for full colonization potential; colonization and fish cover; mix 20-40% mix of stable 1. Epifaunal Less than 20% stable of snags, submerged logs, adequate habitat for habitat; habitat availability habitat: lack of habitat is Substrate/ Available undercut banks, cobble, or other maintenance of less than desirable; obvious; substrate stable habitat and at stage to populations: presence of substrate frequently Cover unstable or lacking. allow full colonization potential additional substrate in the disturbed or removed. (i.e. snags/logs that are not new form of newfall, but not vet fall and not transient) prepared for colonization. Score 20 19 18 17 16 10 9 8 7 6 18 15 14 13 12 11 5 4 3 2 1 0 Fravel, cobble, and bould Gravel, cobble, and Gravel, cobble, and Gravel, cobble, and particles are 0-25% surrounded boulder particles are 25boulder particles are 50boulder particles are more 2. Embeddedness by fine sediment. Layering of than 75% surrounded by 50% surrounded by fine 75% surrounded by fine cobble provides diversity of niche sediment. sediment. fine sediment. space 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Score 20 19 18 17 16 17 All four velocity/depth regimes Only 2 of the 4 habitat Only 3 of the 4 regimes Dominated by 1 present (slow-deep, slow-Velocity/Depth present (if fast-shallow is regimes present (if fastshallow, fast-deep, fast velocity/depth regime nissing, score lower than shallow or slow-shallow Regime shallow)(slow is <0.3m/s, deep is (usually slow-deep). if missing other regimes). are missing, score low) >0.5 m). Score 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 Moderate deposition of Heavy deposits of fine Some new increase in bar new gravel, sand, or fine material, increased bar Little or no enlargement of formation, mostly from sediment on old and new development: more than 4. Sediment islands or point bars and <5% of gravel, sand, or fine bars: 30-50% of the 50% of the bottom the bottom affected by sediment sediment; 5-30% of the bottom affected; sediment changing frequently; pools Deposition deposition. bottom affected; slight deposits at obstructions, almost absent due to deposition in pools. substantial sediment constrictions and bends: moderate deposition of deposition. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 1 0 19 Score 4 3 2 5

Benthic Macroinvertebrate and Habitat Field Data Sheet - High Gradient **Condition Category** Habitat Parameter Optimal Suboptimal Marginal Poor Score Water fills >75% of the Water fills 25-75% of the Very little water in channel Water reaches base of both 5. Channel Flow available channel; or <25% available channel, and/or lower banks, and minimal amoun and mostly present as of channel substrate is riffle substrates are mostly Status standing pools. of channel substrate is exposed exposed. exposed. 20 19 18 17 16 15 14 13 12 11 18 Score 10 9 8 7 6 5 4 3 2 1 0 Some channelization Channeliztion may be Banks shored with gabion present, usually in areas of extensive; embankments or cement; over 80% of bridge abutments; Channelization or dredging or shoring structures the stream reach evidence of past 6. Channel Alteration absent or minimal; stream width present on both banks; channelized and disrupted channelization, i.e. normal pattern. and 40-80% of stream Instream habitat greatly dredging, may be present reach channelized and altered or removed but recent channelization is disrupted. entirely not present. 10 9 8 7 6 Score 20 19 18 17 16 15 14 13 12 11 5 4 3 2 1 0 18 Occurrence of riffles relatively frequent; ratio of distance Occasional riffle or bend; Generally all flat water or between riffles divided by width of Occurrence of riffles shallow riffles: poor bottom contours provide the stream <7:1 (generally 5 to infrequent; distance 7. Frequency of some habitat: distances habitat: distance between 7); variety of habitat is key. In between riffles divided by between riffles divided by riffles divided by the width Riffles streams where riffles are the width of the stream is the width of the stream is of the stream is a ratio of continuous, placement of between 7 to 15. between 15 to 25. >25. boulders or other large, natural obstruction is important. Score 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 19 Unstable: many eroded 8. Bank Stability Moderately stable; Moderately unstable: 30areas: "raw" areas Banks stable; evidence of infrequent, small areas of (score each bank) 60% of bank reach has frequent along straight erosion or bank failure absent or erosion mostly healed **Note: Determine left** areas of erosion; high sections and bends; minimal; little potential for future over. 5-30% of bank in erosion potential during obvious bank sloughing; or right side by problems. <5% of bank affected reach has areas of 60-100% of bank has floods erosion facing downstream. erosional scars. 9 Score Left Bank 10 9 8 6 4 3 0 7 5 2 Score Right Bank 10 9 4 0 9 8 7 6 5 3 2 1 70-90% of the streambank More than 90% of the 50-70% of the streambank Less than 50% of the surfaces covered by native streambank surfaces and vegetation, but one class surfaces covered by streambank surfaces immediate riparian zone covered of plants is not wellvegetation: disruption covered by vegetation: 9. Vegetation by native vegetation, including represented: disruption obvious: patches of bare disruption of streambank rees, understory shrubs, or non-**Protection (score** evident but not affecting soil or closely cropped vegetation is very high; woody macrophytes; vegetation vegetation common; less full plant growth potential vegetation has been each bank) disruption through grazing or to any great extent; more than one-half of the removed to 5 centimeters mowing minimal or not evident: than one-half of the potential plant stubble or less in average stubble almost all plants allowed to grow potential plant stubble height remaining. height. naturally. height remaining. Score Left Bank 10 10 9 6 3 0 8 5 4 2 10 Score Right Bank 10 9 0 8 7 6 5 4 3 10. Riparian Width of riparian zone >18 Width of riparian zone <6 Width of riparian zone 12-Width of riparian zone 6-12 meters; human activities (i.e. Vegetative Zone meters; human activities 18 meters; human meters; little or no riparian parking lots, roadbeds, clearactivities have impacted have impacted zone a vegetation due to human Width (score each cuts. lawns, or crops) have not zone only minimally. activities. great deal. banks riparian zone) impacted zone. Score Left Bank 9 10 9 6 5 0 8 3 Score Right Bank 10 10 181 Total Score Notes:

WSSI BENTHIC MACROINVERTEBRATE BENCH SHEET							
Job Name/#	Glade - 20030	Sample subsorted by:	MJ	Watland			
Station ID:	Reach 1-B	Date Subsorted:	4/14/14		nc.®		
Stream Name:	The Glade	# of Grids subsorted	15	and Solution A			
Date Sampled:	4/9/14	Total # of subsorted insects:	101	Total # identified:	87		
Sampling Method:	Multihabitat	Sample Identified by:	ABR	Date Identified:	9/19/14		

Taxa Collected:

			_	Metretopodidae			Lepidostomatidae	
Porifera	Spongillidae]	Neoephemeridae			Leptoceridae	
Ostracoda	Unknown			Oligoneuridae			Limnephilidae	
Flatworms	Tricladida			Psuedironidae			Molannidae	
	Planariidae			Polymitarcyidae			Odontoceridae	
Gastropoda	Unknown			Potamanthidae			Philopotamidae	
Limpets	Ancylidae	1		Siphlonuridae			Phryganeidae	
Snails	Immature			Tricorythidae			Polycentropodidae	
	Lymnaeidae		Zygoptera	Early Instar and/or damaged			Psychomyiidae	
	Physidae		_)goptora	Calopterygidae			Ryacophilidae	
	Planorbidae			Coenagrionidae	1		Sericostomatidae	
	Hydrobiidae			Lestidae	1		Uenoidae	
	Pleuroceridae			Protoneuridae		Lonidontoro		
			Anicontooro			Lepidoptera	Early Instar and/or damaged	
Diversity	Viviparidae		Anisopteera	Early Instar and/or damaged		0.1	Pyralidae	
Bivalvia				Aeshnidae		Coleoptera	Early Instar and/or damaged	
	Corbiculidae			Cordulegastridae			Chrysomelidae	
	Sphaeriidae	10		Corduliidae			Curculionidae	
	Unionidae		1	Gomphidae			Dryopidae	
Oligochaeta	Unknown	23		Libellulidae			Dytiscidae	
Lumbriculida]	Macromiidae			Elmidae	
	Lumbriculidae			Petaluridae			Gyrinidae	
Tubificida]	Cordullidae/Libelluidae			Haliplidae	2
	Enchytraeidae		Plecoptera	Early Instar and/or damaged			Helodidae	
	Naididae			Capniidae			Helophoridae	
	Tubificidae			Chloroperlidae			Hydraenidae	
Haplotaxida				Leuctridae			Hydrochidae	
· · · P · · · · · · · · · ·	Haplotaxidae			Nemouridae			Hydrophilidae	
Leeches	Hirudinea			Peltoperlidae			Limnichidae	
Lecones	Erpobdellidae			Perlidae			Noteridae	
	Glossiphoniidae			Perlodidae				
							Psephenidae Dtiledaet didee	
	Hirudinidae			Pteronarcyidae			Ptilodactylidae	
	Pisciolidae			Taeniopeterygidae			Scirtidae	
Branchiobdellida			Hemiptera	Early Instar and/or damaged		Diptera	Early Instar and/or damaged	
Copepoda	Unknown			Belostomatidae			Athericidae	
Decapoda	Cambaridae			Corixidae			Blephariceridae	
	Portunidae			Gelastocoridae			Canaceidae	
Shrimp				Gerridae			Ceratopogonidae	
	Palaemonidae			Hebridae			Choaboridae	
Isopoda				Hydrometridae			Chironomidae	49
	Asellidae			Mesoveliidae			Culicidae	
Amphipoda				Naucoridae			Dixidae	
	Crangonyctidae			Nepidae			Dolichopodidae	
	Gammaridae			Notonectidae			Empididae	
	Talitridae			Veliidae			Ephydridae	
Water Mites	Taitiliado			Pleidae			Muscidae	
valer miles	Hydracarina	1	Neuroptera	Tieluae			Nymphomyiidae	
Enhomorontoro	Early Instar and/or damaged	I	Neuropiera	Cievaide e				
Ephemeroptera				Sisyridae			Pelecorhynchidae	
	Acanthometropodidae		Megaloptera				Psychodidae	
	Ameletidae			Corydalidae			Ptychopteridae	
	Baetidae		L	Sialidae			Sciomyzidae	
	Baetiscidae		Trichoptera	Early Instar and/or damaged			Simuliidae	
	Behningiidae			Branchycentridae			Stratiomyidae	
	Caenidae			Calamoceratidae			Syrphidae	
	Ephemerellidae]	Glossosomatidae			Tabanidae	
	Ephemeridae		1	Goeridae			Tanyderidae	
	Heptageniidae		1	Heliicopsychidae			Thaumaleidae	
	Isonychiidae		1	Hydropsychidae			Tipulidae	1
	Leptophlebiidae		1	Hydroptilidae				51
TOTAL:		35	TOTAL:		1	TOTAL:		

Studies and Solutions, Inc.

Benthic Macroinvertebrate and Habitat Field Data Sheet - High Gradient Job # Task 20030, Task M3a Station ID: Land Use: Reach 1-C Ecoregion: Piedmont Urban Field Team: BAC / MJ Location: Reston, VA Start time: The Glade 38°55'22" Site: Latitude: Finish time: 4/9/2014 Longitude: 77°20'12" Survey Reason: Year 4 Biomonitoring Date: Stream Physiochemical Measurements Instrument ID number: N/A pH: N/A Temperature: N/A °C Conductivity: N/A uS/cm N/A Dissolved Oxygen: mg/L Did instrument pass all post-calibration checks? N/A If NO- which parameter(s) failed and action taken: N/A **Benthic Macroinvertebrate Collection** Method Used: Single Habitat (Riffle) Multi Habitat (Logs, Plants, etc.) x Riffle Quality: Good Marginal None Х Poor Woody Riffle Habitats Sampled: х Debris Banks Vegetation 18 # Jabs: Weather Observations **Current Weather** Cloudy Clear х Rain/Snow Foggy **Recent Precipitation** Clear Х Showers Rain Storms Stream Flow х Normal Above Normal Flood Low **Biological Observations** Other.... 2 Periphyton Salamanders 0 Filamentous Algae Warmwater Fish 0= Not observed 1 Submerged Macrophytes Coldwater Fish 0 1= Sparse Emergent Macrophytes Beavers 0 2= Common to Abundant 0 Muskrats Cravfish 0 3= Dominant-Ducks/Geese Corbicula 0 0 Abnormally high density where other taxa are Unionidae 0 Snakes 1 insignificant in relation to the dominant taxa. Turtles There can be situations where multiple taxa **Operculate Snails** 0 0 are dominant such as algae and snails Frogs/Tadpoles Non-operculate Snails 0 1 **High Gradient Habitat Data Sheet Condition Category** Habitat Parameter Optimal Suboptimal Marginal Poor Score Greater than 70% of substrate 40-70% mix of stable favorable for epifaunal habitat; well suited for full colonization potential; colonization and fish cover; mix 20-40% mix of stable 1. Epifaunal Less than 20% stable of snags, submerged logs, adequate habitat for habitat; habitat availability habitat: lack of habitat is Substrate/ Available undercut banks, cobble, or other maintenance of less than desirable; obvious; substrate stable habitat and at stage to populations: presence of substrate frequently Cover unstable or lacking. allow full colonization potential additional substrate in the disturbed or removed. (i.e. snags/logs that are not new form of newfall, but not vet fall and not transient) prepared for colonization. Score 20 19 18 17 16 10 9 8 7 6 18 15 14 13 12 11 5 4 3 2 1 0 Fravel, cobble, and bould Gravel, cobble, and Gravel, cobble, and Gravel, cobble, and particles are 0-25% surrounded boulder particles are 25boulder particles are 50boulder particles are more 2. Embeddedness by fine sediment. Layering of than 75% surrounded by 50% surrounded by fine 75% surrounded by fine cobble provides diversity of niche sediment. sediment. fine sediment. space 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Score 19 All four velocity/depth regimes Only 2 of the 4 habitat Only 3 of the 4 regimes Dominated by 1 present (slow-deep, slow-Velocity/Depth present (if fast-shallow is regimes present (if fastshallow, fast-deep, fast velocity/depth regime nissing, score lower than shallow or slow-shallow Regime shallow)(slow is <0.3m/s, deep is (usually slow-deep). if missing other regimes). are missing, score low). >0.5 m). Score 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 16 Moderate deposition of Heavy deposits of fine Some new increase in bar new gravel, sand, or fine material, increased bar Little or no enlargement of formation, mostly from sediment on old and new development: more than 4. Sediment islands or point bars and <5% of gravel, sand, or fine bars: 30-50% of the 50% of the bottom the bottom affected by sediment sediment; 5-30% of the bottom affected; sediment changing frequently; pools Deposition deposition. bottom affected; slight deposits at obstructions, almost absent due to deposition in pools. substantial sediment constrictions and bends: moderate deposition of deposition. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 1 0 4 3 2 17 Score 5

Benthic Macroinvertebrate and Habitat Field Data Sheet - High Gradient **Condition Category** Habitat Parameter Optimal Suboptimal Marginal Poor Score Water fills >75% of the Water fills 25-75% of the Very little water in channel Water reaches base of both 5. Channel Flow available channel; or <25% available channel, and/or lower banks, and minimal amoun and mostly present as of channel substrate is riffle substrates are mostly Status standing pools. of channel substrate is exposed exposed. exposed. 20 19 18 17 16 15 14 13 12 11 19 Score 10 9 8 7 6 5 4 3 2 1 0 Some channelization Channeliztion may be Banks shored with gabion present, usually in areas of extensive; embankments or cement; over 80% of bridge abutments; Channelization or dredging or shoring structures the stream reach evidence of past 6. Channel Alteration absent or minimal; stream width present on both banks; channelized and disrupted channelization, i.e. normal pattern. and 40-80% of stream Instream habitat greatly dredging, may be present reach channelized and altered or removed but recent channelization is disrupted. entirely not present. 10 9 8 7 6 Score 20 19 18 17 16 15 14 13 12 11 5 4 3 2 1 0 18 Occurrence of riffles relatively frequent; ratio of distance Occasional riffle or bend; Generally all flat water or between riffles divided by width of Occurrence of riffles shallow riffles: poor bottom contours provide the stream <7:1 (generally 5 to infrequent; distance 7. Frequency of some habitat: distances habitat: distance between 7); variety of habitat is key. In between riffles divided by between riffles divided by riffles divided by the width Riffles streams where riffles are the width of the stream is the width of the stream is of the stream is a ratio of continuous, placement of between 7 to 15. between 15 to 25. >25. boulders or other large, natural obstruction is important. Score 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 18 Unstable: many eroded 8. Bank Stability Moderately stable; Moderately unstable: 30areas: "raw" areas Banks stable; evidence of infrequent, small areas of (score each bank) 60% of bank reach has frequent along straight erosion or bank failure absent or erosion mostly healed **Note: Determine left** areas of erosion; high sections and bends; minimal; little potential for future over. 5-30% of bank in erosion potential during obvious bank sloughing; or right side by problems. <5% of bank affected reach has areas of 60-100% of bank has floods erosion facing downstream. erosional scars. 10 Score Left Bank 10 9 8 6 4 3 0 7 5 2 Score Right Bank 10 9 4 0 10 8 7 6 5 3 2 1 70-90% of the streambank More than 90% of the 50-70% of the streambank Less than 50% of the surfaces covered by native streambank surfaces and vegetation, but one class surfaces covered by streambank surfaces immediate riparian zone covered of plants is not wellvegetation: disruption covered by vegetation: 9. Vegetation by native vegetation, including represented: disruption obvious: patches of bare disruption of streambank rees, understory shrubs, or non-**Protection (score** evident but not affecting soil or closely cropped vegetation is very high; woody macrophytes; vegetation vegetation common; less full plant growth potential vegetation has been each bank) disruption through grazing or to any great extent; more than one-half of the removed to 5 centimeters mowing minimal or not evident: than one-half of the potential plant stubble or less in average stubble almost all plants allowed to grow potential plant stubble height remaining. height. naturally. height remaining. Score Left Bank 10 10 9 6 3 0 8 5 4 2 10 Score Right Bank 10 9 0 8 7 6 5 4 3 10. Riparian Width of riparian zone >18 Width of riparian zone <6 Width of riparian zone 12-Width of riparian zone 6-12 meters; human activities (i.e. Vegetative Zone meters; human activities 18 meters; human meters; little or no riparian parking lots, roadbeds, clearactivities have impacted have impacted zone a vegetation due to human Width (score each cuts. lawns, or crops) have not zone only minimally. activities. great deal. banks riparian zone) impacted zone. 10 Score Left Bank 10 9 8 6 5 0 3 Score Right Bank 10 10 185 Total Score Notes:

WSSI BENTHIC MACROINVERTEBRATE BENCH SHEET							
Job Name/#	Glade - 20030	Sample subsorted by:	JMC	Watland			
Station ID:	Reach 1-C	Date Subsorted:	5/14/14		nc.		
Stream Name:	The Glade	# of Grids subsorted	8	and solution of			
Date Sampled:	4/9/14	Total # of subsorted insects:	108	Total # identified:	97		
Sampling Method:	Multihabitat	Sample Identified by:	ABR	Date Identified:	8/22/14		

Taxa Collected:

	-			Metretopodidae			Lepidostomatidae	L
Porifera	Spongillidae			Neoephemeridae			Leptoceridae	1
Ostracoda	Unknown			Oligoneuridae			Limnephilidae	
latworms	Tricladida			Psuedironidae			Molannidae	
	Planariidae			Polymitarcyidae			Odontoceridae	
Gastropoda	Unknown			Potamanthidae			Philopotamidae	
impets	Ancylidae			Siphlonuridae			Phryganeidae	
inails	Immature			Tricorythidae			Polycentropodidae	
	Lymnaeidae	3	Zygoptera	Early Instar and/or damaged			Psychomyiidae	
	Physidae			Calopterygidae			Ryacophilidae	
	Planorbidae	1		Coenagrionidae			Sericostomatidae	
	Hydrobiidae			Lestidae			Uenoidae	
	Pleuroceridae			Protoneuridae		Lepidoptera	Early Instar and/or damaged	
	Viviparidae		Anisopteera	Early Instar and/or damaged			Pyralidae	
ivalvia	Immature			Aeshnidae		Coleoptera	Early Instar and/or damaged	
	Corbiculidae			Cordulegastridae		oolooptola	Chrysomelidae	
	Sphaeriidae	4		Corduliidae			Curculionidae	
	Unionidae	т		Gomphidae			Dryopidae	
Nigoobacto		10	4					
)ligochaeta	Unknown	16	4	Libellulidae			Dytiscidae	
umbriculida			4	Macromiidae			Elmidae	3
	Lumbriculidae			Petaluridae			Gyrinidae	
ubificida				Cordullidae/Libelluidae			Haliplidae	
	Enchytraeidae		Plecoptera	Early Instar and/or damaged			Helodidae	
	Naididae			Capniidae			Helophoridae	
	Tubificidae			Chloroperlidae			Hydraenidae	
laplotaxida				Leuctridae			Hydrochidae	
	Haplotaxidae			Nemouridae			Hydrophilidae	
eeches	Hirudinea			Peltoperlidae			Limnichidae	
	Erpobdellidae			Perlidae			Noteridae	
	Glossiphoniidae			Perlodidae			Psephenidae	
	Hirudinidae			Pteronarcyidae			Ptilodactylidae	
	Pisciolidae			Taeniopeterygidae			Scirtidae	
Branchiobdellida	Branchiobdellidae		Hemiptera	Early Instar and/or damaged		Diptera	Early Instar and/or damaged	
Copepoda	Unknown	3		Belostomatidae			Athericidae	
)ecapoda	Cambaridae	0		Corixidae			Blephariceridae	
Jecapoua	Portunidae			Gelastocoridae			Canaceidae	
la sina n	Fortunidae							2
hrimp	Dele en en ide e			Gerridae Hebridae			Ceratopogonidae	2
	Palaemonidae						Choaboridae	
sopoda				Hydrometridae			Chironomidae	62
	Asellidae			Mesoveliidae			Culicidae	
mphipoda				Naucoridae			Dixidae	
	Crangonyctidae			Nepidae			Dolichopodidae	
	Gammaridae			Notonectidae			Empididae	2
	Talitridae			Veliidae			Ephydridae	
Vater Mites				Pleidae			Muscidae	
	Hydracarina		Neuroptera				Nymphomyiidae	
phemeroptera	Early Instar and/or damaged		1	Sisyridae			Pelecorhynchidae	
-	Acanthometropodidae		Megaloptera				Psychodidae	
	Ameletidae			Corydalidae			Ptychopteridae	
	Baetidae		1	Sialidae			Sciomyzidae	
	Baetiscidae		Trichoptera	Early Instar and/or damaged			Simuliidae	
	Behningiidae		. nonopiera	Branchycentridae			Stratiomyidae	
	-		1	-				
			4	Calamoceratidae	<u> </u>		Syrphidae	
	Ephemerellidae			Glossosomatidae			Tabanidae	
	Ephemeridae			Goeridae			Tanyderidae	
	Heptageniidae			Heliicopsychidae			Thaumaleidae	
	Isonychiidae			Hydropsychidae			Tipulidae	
	Leptophlebiidae		•	Hydroptilidae				70